

Design of Home Network Architecture using ACE/TAO Real Time Event Service

Eko Henfri Binugroho
1
, Young Bong Seo

2
, and Jae Weon Choi

3

1
Electronics Engineering Polytechnic Institute of Surabaya

2 Innovation Center for Engineering Education, Pusan National University
3 School of Mechanical Engineering, Pusan National University

E-mail: sragen@eepis-its.edu

Abstract

 This paper proposes a home network design based on

publisher/subscriber architecture which is developed using

ACE/TAO Real-time Event Service (RTES) as the

middleware platform. This design addresses a feature to

support a real-time implementation for home network

application such as home automation. Home network

participants have been classified into several components

based on consumer and supplier implementation in the

ACE/TAO RTES in order to simplify the design. To

optimize the network utilization, events are filtered based

on their type and source for each publisher and subscriber.

To deal with heterogeneous type of home appliances, event

header information has been extended to wrap more

information. Each of events can be configured with a

specific scheduling and priority setting to meet its quality

of service (QoS) according to the requirement. Network

performance in handling an increasing number of

consumer or supplier has been evaluated and show an

acceptable result.

Keywords: Home Network, ACE/TAO, RTES, QoS.

1. Introduction

Home networking development has an objective to

improve the quality of human life to be more convenient

by providing some services such as remote control and

remote monitoring, home automation, home security

management, home multimedia network, etc. Nowadays,

home networking technologies and capabilities are

receiving an increased attention from consumers, software

developers, hardware manufacturers, and service providers.

The robustness of Internet Protocol (TCP/IP) has

contributed to its success in the internet environment, and

the role of this kind of communication is already well

established [1]. It seems that TCP/IP will become a de

facto standard for connecting diverse home appliances

throughout the home network. Furthermore the chip’s

development also became more and more aggressive and it

gave a support to TCP/IP protocol. This fact makes an

advantage in developing home network appliances using

TCP/IP as the main protocol.

Home appliances will increase in complexity, and it

needs higher connection speed to transfer its information.

Many wide-ranging applications in home network

development have been proposed, such as; Jini [2], LnCP

[3], UPnP [4], ECHONET [5], DLNA [6], ZigBee [7],

LonWork, X10, etc. However there are heterogeneous

technical aspects in hardware and middleware architecture

used on the home network infrastructure. They have many

excellent designs and implementations, but collaboration

of several architectures become difficult due the lack of the

standard. A viable solution for home network platform is

publisher/subscriber architecture. This architecture is

chosen since it defines a communication model that can be

implemented over many networks, transport protocols, and

OS platforms [8]. Publisher/subscriber is already used in

distributed real-time and embedded (DRE) systems which

require middleware support for real-time transfer of control

and data among large number of heterogeneous entities

that coordinate with each other in a loosely coupled

fashion [9].

In this paper we propose a home network

infrastructure based on Common Object Request Broker

Architecture (CORBA) middleware using ACE/TAO RTES

one of the real-time publisher/subscriber based middleware.

Similar CORBA based home network using IEEE-1394

network [10] has been reported, but it still need a dedicated

communication wire to work. Normally, it takes several

steps to accomplish the installation of a home network

including pulling the connection wire, installing software,

and configuring the system. The hardest task in this

installation seems to be the cabling process, since a normal

house typically does not have an existing network

infrastructure installed on it yet. Furthermore, a

modification of a network that based on dedicated

connection will become an annoying problem in the future.

To overcome this problem, in this paper we suggest a home

network infrastructure using PLC Ethernet device as an

alternative solution for the wired home network

connection.

2. Overview of CORBA Event Service

2.1 CORBA COS Event Service

The CORBA Event Service provides a flexible

model for asynchronous communication among

mailto:sragen@eepis-its.edu

objects. The standard CORBA operation invocation model

supports two-way, one-way and deferred synchronous

interactions between clients and servers. To alleviate the

restrictions on the standard CORBA invocation models,

CORBA Object Service (COS) Event Service was

designed. In particular, the COS Event Service supports

asynchronous message delivery and allows one or more

suppliers to send messages to one or more consumers.

Event data can be delivered from suppliers to consumers

without requiring these participants to know each other

explicitly. Suppliers use Event Channels to push the data to

consumers. Likewise, consumers can explicitly pull data

from suppliers.

However, COS Event Service still has limitation like

no event filtering support. Most Event Service

implementations deliver all events to all consumers

connected to that channel. This lack of filtering eventually

will increase system network utilization especially when

multiple suppliers are involved. Beside that COS Event

Service still has no support in configuration of different

quality of service (QoS). All events will be treated equally

with same priority, which make a difficulty in configuring

several events that have different level of importance. COS

Event Service still has difficulty in handling events that

must be delivered within a specified deadline.

Furthermore, COS Event Service did not address periodic

task capability which supports event delivery at certain

interval.

2.2 ACE TAO Real-time Event Service

The ADAPTIVE Communication Environment

(ACE) is an object-oriented toolkit that implements

fundamental design patterns for communication software,

while THE ACE ORB (TAO) is a real-time

implementation of CORBA compliant that built using the

framework components and patterns provided

by ACE. ACE/TAO is freely available and already used in

many distributed projects and applications in diverse

domains, including command and control systems,

telecom, datacom, medical engineering, distributed

interactive simulations, and financial services. ACE/TAO

Real-time Event Service (RTES) is an enhancement of the

push model of COS event service. Similar with the push

model in COS Event Service like depicted in Figure 1,

suppliers generate events and then push them to the Event

Channel. Consumers became the target of the events, while

Event Channel decouples suppliers and consumers by

propagating events to consumers on behalf of suppliers.

Even though ACE/TAO RTES lacks pull of model

support given by COS Event Service, it has several

benefits such as prioritized dispatching within preemption

classes, event data model, event filtering, event correlation,

suspend/resume connection, and periodic event processing

[11]. With event filtering/correlation, events can be filtered

or correlated with other events based on their type or

identifier. By using RTES, event channel subscriptions can

supply different QoS parameters so that event delivery can

be scheduled with fixed priority, earliest deadline first,

least laxity first or maximum urgency first strategies

[12,13]. These features will give a great beneficial in home

network implementation in which heterogeneous type of

suppliers and consumers can be treated in several QoS

according to the design's scenario.

3. RTES-Based Home Network Design

3.1 Components in the Proposed Home Network

In the proposed home network, network participants

are classified into several components based on the

implementation of consumer and supplier program in the

main Event Channel, see Figure 5. Classification of these

components can be described as follow:

 DeviceManager: Designed to configure the

connection of other components in the home network.

Registration process of other component in

DeviceManager can be set manually or automatically

based on event source and event type registration

table. It periodically checks the channel status, and if

a fault occurs it will try to reconnect to the broken

channel.

 InputDevice: Designed to publish event(s) to the

Event Channel using information received from

home network instrument or device connected to it

such as sensors, infrared receiver, switch, etc.

 OutputDevice: This component receives and

processes events from the channel and then uses

them to drive the controllable home appliance

connected to it such as lamp, fan, heater, alarm, etc.

 IntegratedDevice: Created in order to

accommodate home appliance that not only can be

controlled but also can provide data or information

such as air conditioner, audio system, etc.

 RemoteProgram: Designed to provide an interface to

the user to access home appliance remotely. By

equipping it with an interface such as graphical user

interface (GUI), user can manually give a remote

command or to do a remote monitoring to other

devices.

 UserSpecified Application: Configured to perform a

Event

Channel

push()

push()

push()

push()

push()

Supplier

Supplier
Consumer

Consumer

Consumer

Event propagation

Figure 1. The communication model supported in

ACE/TAO RTES

special scenario such us home automation, security

control and monitoring, environment messaging, etc.

Within this component several devices can be

collaborated to perform the desired scenario.

 Gateway: Designed to bridge the connection between

Event Channel based home network with external or

existing home network such as IEEE1934, ZigBee,

X10, etc.

3.2 Extended Event Header Mechanism

 By using RT Event Service, home network design is

decoupled. It means all events to be sent from one to

another will be transferred through Event Channel in which

sender (supplier) and receiver (consumer) does not know

the location of each other explicitly. This design makes the

Event Channel’s architecture flexible, but has difficulty to

be implemented for dedicated connection in which the

supplier wants to address the data to the desired destination.

Event by default does not have information about

destination address to where it should be sent. In RT Event

Service, event filtering feature is used to determine event

delivery instead of address routing explicitly. Each event in

RT Event Service has event header that contains source and

type information, thus Event will be delivered by Event

Channel only to consumer(s) that already subscribe event

with the same source and type. Supplier does not need to

know where the consumer is, but on the other hand

consumer already orders event(s) that it wants. Event

Channel only uses event source and event type for filtering,

which makes it becomes difficult to describe

heterogeneous home appliance. Since each of them is 4

bytes in length, its content can be extended to make device

description in home network implementation easier, see

Figure 3.

 To do this, byte manipulation can be use to insert

several information into them. Event source can be

expanded into two types of information, these are

Application and Location. Application information is used

by both of supplier and consumer to describe specific

application in which it wants to be implemented. Location

is used by supplier to define its location in the house, and

consumer uses it to determine from which location event

can be accepted. On the other hand, event type is expanded

into three information, these are Function, CommandType

and SequenceType. Function is used by supplier event to

describe the function that it wants to command. Consumer

use Function to describe the function that is implemented

on it. CommandType is used to describe type of command

from particular event. SequenceType describes the type of

sequence which wraps the data in the event payload.

3.3 Structure of Event Data Payload

By default, RT Event Service uses sequence of octet

as event payload which is described in the

RtecDefaultEventData.idl. This payload is used more often

by high-performance applications, but it is difficult in

home network implementation since it does not describe

any specific data type other than octet. CORBA Any is the

most flexible data type for wrapping information, but it has

the worst performance compared with other data type.

Fixed structured event has better performance than event

type Any, but it less flexible in handling event with

different structure, or the same structure but with different

data type. As a solution, a combination from structure and

union can be used. Event is wrapped in the same structure,

but the data inside the structure uses union that can wraps

several data types. To support more then one data in one

event, sequence of union is used. The event data structure

used in the home network is shown in the Figure 4. This

design is more flexible then the fixed structure and has

better performance then data Any. Flexibility of this

structure can be increased by adding more data type in the

Gateway

Consumer Supplier

Protocol / data Translator

External Network

IntegratedDevice

RemoteProgram

User Interface

InputDevice

Supplier

Input Instrument

OutputDevice

Controlled Apparatus

Naming

Service

Supplier

Input/sensor Part

 Controlled Part

Consumer

Supplier

Remote Command

Monitoring Data

Consumer

UserSpecified

Application

User Specified

Program

Supplier

Output Command

Input Data

Consumer

Consumer

DeviceManager

Consumer Supplier

Component’s registration record

RT
Event

Channel

Figure 2. Components connection in to the main Event

Channel.

Event Type (4 bytes)

Event Source (4 Bytes)

Application MainLocation SubLocation

Function CommandType SequenceType

Figure 3. Information extension in the event source

and event type variable.

union definition but the performance of event delivery will

decrease. This is a flexible option in the trade between

flexibility and performance.

Any data defined in the union’s definition can be

inserted to the sequence and different data type also can be

inserted in the same sequence. Union discriminator will

changed automatically if different data type is inserted. It

enables consumer to send dynamic data type in each event

delivery if needed. C++ mapping for Interface Definition

Language (IDL) unions defines a class that provides

accessor methods for the union discriminator and the

corresponding union fields which is named _d. This

accessor is used by consumer implementation program to

determine the type of each data inside the sequence from

the received event. SequenceType information that stored

in the event header is used by supplier to mark data in the

sequence as HOMOGENEOUS if data in the sequence

have the same type, or as HETEROGENEOUS if its data

type is various.

3.4 Registering Component to the Network

Event Channel activation will trigger the

DeviceManager to be active too, so it will be ready for

registration process of any other components.

DeviceManager itself will subscribe events to the Event

Channel without event source filtering, thus it can transfer

event with all components in the network. It only

subscribes several specific event types, mainly for

registration and configuration process. When a component

wants to connect to the Event Channel, it connects to the

secondary channel first then sends its registration event

including its ComponentType information to the Device

Manager. Component marks the event information as blank

by setting all bits in the information field as 1 to tell

DeviceManager to perform configuration process.

DeviceManager by default will use manual

configuration using user interface program, and let user

specifies the location or application of the new component

attached into the network. If user wants the automatic

configuration to take place, then the grouping method

should be chosen, based on location or application. If by

mistake the user lets the setting on automatic instead of

manual mode, and an undesired automatic setting already

performed, user still can rollback this setting.

DeviceManager will alter the undesired setting with user

supplied setting, both inside its registration table and at the

desired component QoS information. By default

DeviceManager groups components based on the location

information first, if the appropriate component is not found,

it will try to connect the component based on the

application information. User still can alter the order of this

process if desired. If component uses multiple events in its

registration, then each event will be treated using a same

process sequence.

To describe the registration process which is

described in flowchart in Figure 5, actions that performed

by DeviceManager can be classified into:

 Process A : Check if any component with the same

QoS dependencies and publications exist. If it exist

then inform user with interface program that the

same components is detected, then will terminate the

automatic configuration and let the manual setting to

be performed.

 Process B : Search event(s) with the same event

 enum DataType

{ xBOOL,xCHAR,xSHORT,xLONG,xFLOAT,xLLONG,xDOUBLE

};

union xData switch (DataType) //union definition

{ case xBOOL: boolean BData;

 case xCHAR: char CData;

 case xSHORT: short SData;

 case xLONG: long LData;

 case xFLOAT: float FData;

 case xLLONG: long long LLData;

 case xDOUBLE: double DData;

};

struct RtecEventData //payload data structure

{ long TimeStamp;

 string message;

 sequence <xData> HomeNetData;

}

Figure 4. The structure of data payload used in the file

RtecDefaultEventData.idl.

Event source is

blank

Process A

terminated

Process B

Found

Process C starting with

UNCONNECTED event 1st

Process G

Found

Yes

Process D starting with

UNCONNECTED event 1st

Found

Store the connection’s

configuration in the connection

table

Process F

A

A No

Yes

Yes

Yes

No

No No

Yes

No

Process E

Stop

Start

Mark the event as

UNCONNECTED

Mark the event as

CONNECTED

Figure 5. Registration process for OutputDevice,

InputDevice and IntegratedDevice.

header and event type.

 Process C : Search event’s Location for event(s)

with the same event type.

 Process D : Search event’s Application for

event(s) with the same event type.

 Process E : Copy event source information from

the event found in the searching process to the new

one (component will use the new event source to

connect with the main Event Channel).

 Process F : Inform user interface program that

configuration process did not found any appropriate

event to connect, give an option to user to insert

information in the blank event source, or let

DeviceManager to insert a default value.

 Process G : Mark the corresponding component as

REGISTERED and search RemoteProgram that

supports registered event type. If the appropriate

RemoteProgram is found, then send a message about

the new component’s information and its status, and

ask RemoteProgram whether it wants to remote the

new component or not.

5. Testbed Configuration and Experiment Result

5.1 Testbed Configuration

The proposed home network is evaluated using a

testbed within three computers, heater, fan and several

sensors to perform a simple room temperature control

application, see Figure 6. Testbed is designed using several

computers and communication devices in order to show

the flexibility of the home network design, since

component can be distributed easily in any available

computer. If the hardware configuration is changed,

implementation program remains the same, except its

implementation is connected to I/O device. However, only

small modification is needed which is the just com port

number readjustment. USB Wi-Fi and Ethernet adapter

connected to PLC Ethernet in PC-1 are bridged, thus all

computers logically use a same network.

5.2 Communication Performance

In this experiment, throughput and latency from the

consumer and supplier are measured. Event which is used

in this measurement contains a sequence with two

variables inserted and one string with ten characters.

Figure 7 shows consumer’s throughput and latency which

is measured using single supplier. The number of consumer

is increased from one to twenty with all of them have the

same priority. By reversing the scenario between supplier

and consumer, supplier’s performance is measured and its

result is shown in Figure 8. From the experiment, we found

that the supplier has better throughput and latency then the

consumer part. But consumer has better ability in

maintaining total throughput when its number has been

increased.

To measure the real-time performance of the network,

two types of consumers are used. The first one uses high

priority RT_Info, and the other one uses low priority. One

supplier is used to send an event every 10 ms. Low priority

consumer is increased from one to twenty, when the high

priority consumer remains one. From the experiment’s

RT Event Channel

Based Notebook

with Wi-Fi

(Pentium 4 1.7 Ghz)

RT Event Channel

Based PC-1

(Core2Duo 2.4 Ghz)

RT Event Channel

Based PC-2

(Celeron 600 MHz)

PLC Ethernet PLC Ethernet

USB I/O USB Wi-Fi

ATMega128

Bluetooth

ATMega128

Bluetooth

Temperature

sensor

Humidity

sensor

Fan

Halogen

Heater

Dimmer

Circuit

Dimmer

Circuit

Power line

USB Bluetooth

ATMega128

+ Potentiometer

Figure 6. Block diagram of the home network testbed.

Figure 9. Home network testbed.

Figure 7. Consumer’s performance.

Figure 8. Supplier’s performance.

result shown in Figure 9, we found that the high priority

consumer still maintains the throughput around 100

events/second, even though the number of low priority

consumer has been increased.

6. Conclusions

RT Event Service supports a decoupling

communication between supplier and consumer that makes

it very flexible in developing distributed environment like

home network. RT Event Service also supports real-time

capability as an added value that can be adapted in home

network application such as home automation. However,

its hardware requirement is still high for current small

embedded system that make it difficult to be implemented

in an efficient way especially for handling home appliance

that just requires a low speed data transfer.

In the proposed home network, two Event Channels

are used to give higher reliability in terms of channel error.

Default event data payload is also modified using structure

of union sequence. It has less performance but with higher

flexibility then the default one, but it stills a viable choice

since current home network implementation does not need

hard-real-time requirements yet. Event header is extended

to define more specific information in describing home

network event. Automatic device configuration algorithm

has been designed. It can perform an automatic event

source assignment, but real-time configuration still needs

to be set manually and it is left as a future work.

References

[1] G. T. Edens, “Home networking and the CableHome

project at CableLabs”, IEEE Communication

Magazine, vol. 39, pp. 112-121, June 2001.

[2] R. Gupta, S. Talwar, and D. P. Agrawal, “Jini home

networking: a step toward pervasive computing”,

Computer, vol. 25, pp. 34-40, August 2002.

[3] S. C. Kim, J. A. Park, K. W. Lee, and S. W.

Lim, ”Home networking digital TV based on LnCP”,

IEEE Transactions on Consumer Electronics, vol. 48,

pp. 990-996, November 2002.

[4] S.-H Rhee, S.-K. Yang, S.-J. Park, J.-H. Chun, and

J.-A. Park, “UPnP home networking-based IEEE1394

digital home appliances control”, Advanced Web

Technologies and Applications, vol. 3007, pp.

457-466, 2004.

[5] http://www.echonet.gr.jp/english/index.htm.

[6] Digital Living Networking Alliance, DLNA Home

Networked Device interoperability Guidelines

Version 1.0, June 2004.

[7] W. K. Park, I. T. Han, and K. R. Park, “ZigBee based

dynamic control Scheme for multiple legacy IR

controllable digital consumer devices”, IEEE

Transaction on Consumer Electronics, vol. 53,

pp.172-177, February 2007.

[8] D. C. Schmidt and C. O’Ryan, “Patterns and

performance of distributed real-time and embedded

publisher/subscriber architectures”, Journal of

Systems and Software, vol. 66, no. 3, pp.

213–223, June 2003.

[9] G. Deng, M. Xiong, and A. Gokhale, “Evaluating

real-time publish/subscribe service integration

approaches in QoS-enabled component middleware”,

Proceedings of the 10th IEEE International

Symposium on Object and Component-Oriented

Real-Time Distributed Computing, pp. 222-227,

2007.

[10] J. Y. Oh, J. H. Park, G. H. Jung, and S. J. Kang,

“CORBA based core middleware architecture

supporting seamless interoperability between

standard home network middlewares”, IEEE

Transactions on Consumer Electronics, August 2003.

[11] D. C. Schmidt and S. Vinoski, “Object

interconnections”, The OMG Events Service Column

9, February 1997.

[12] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The

design and performance of a real-time CORBA

scheduling service”, Journal of Real-Time System,

vol. 20, no. 2, pp. 117-154, March 2001.

[13] H. M. Huang and C. D. Gill, “Design and

performance of a fault-tolerant real-time CORBA

event service”, Proceedings of the 18th Euromicro

Conference on Real-Time Systems, pp. 33-42, 2006.

Figure 9. Comparison of high and Low priority

consumer.

