

Monitoring Cluster on Online Compiler with Ganglia

Nuryani, Andria Arisal, Wiwin Suwarningsih, Taufiq Wirahman

Research Center for Informatics, Indonesian Institute of Sciences

Komp. LIPI, Gd. 20, Lt. 3, Sangkuriang, Bandung, 40135 Indonesia

Email : {nuryani|andria.arisal|wiwin|taufiq}@informatika.lipi.go.id

Abstract

Ganglia is an open source monitoring system for high

performance computing (HPC) that collect both a whole

cluster and every nodes status and report to the user.

We use Ganglia to monitor our

spasi.informatika.lipi.go.id (SPASI), a customized-

fedora10-based cluster, for our cluster online compiler,

CLAW (cluster access through web). Our experience on

using Ganglia shows that Ganglia has a capability to

view our cluster status and allow us to track them.

Keywords: high performance computing, cluster, cluster

monitoring, ganglia

.

1. Introduction

The need for high performance computer which

closely related with supercomputer and massively

parallel processors (MPP) has been fulfilled with

cluster computer. Supercomputer and MPP is so

complex to develop and need a high cost while cluster

computer can be composed from low cost node

computers with high speed network [8]. Therefore,

cluster become the de-facto building block for high

performance computing [5]. It is made up of nodes,

each containing one or more processors, memory that is

shared by all of the processors in (and only in) the

node, and additional peripheral devices (suck as disks),

connected by a network that allows data to move

between the nodes [1]. Since clusters today consist of

hundreds or thousands of nodes with various hardware

and software bases, monitoring system has become

another key issue to be addressed.

Monitoring systems reports some set of

measurements to higher-level services, therefore, the

operator or administrator can monitor the state,

operation, and health of all system elements[6,7].

Monitoring system is built for visualizing and

monitoring the cluster resource such as memory usage,

disk usage, network statistic, number of running

processes, CPU load, and other CPU metrics. In

addition, analyzing CPU metrics is one way to improve

cluster performance. A number of cluster monitoring

tool are available, e.g., Ganglia, VAMPIR, DIMEMAS,

CACTI, Visuel, Nagios, Zenoss, Zabbix, Performance

Co-Pilot (PCP), and Clumon. Each tools has its own

strength and weaknesses in certain part compared with

the others. For the example, Ganglia is more concerned

with metrics gathering and tracking them over time

while Nagios has focused in an alerting mechanism,

Visuel has an additional function to visualize the

performance data of MPI application and Clumon

offers web-based pages to show the detailed

information about resources, queues, jobs and

warnings[2, 3, 6].

At present, we are developing online compiler for

high performance computing environment focusing on

developing web-interface to ease user (especially

programmer) on using cluster infrastructure named

CLAW (cluster access through web). Online compiler

is a web-based application that provides service for

writing, compilation, and execution of source code

through web. The CLAW has three parts, i.e.,

programming interface, monitoring and administration.

In this paper we focus on monitoring part only. Two

other parts will be presented on other papers.

We use Ganglia to monitor our clusters because of

its simplicity to be installed and configured, its

extensive graphing capabilities and its web-based

interface that allows both current and archival data to

be displayed for a whole cluster and for individual

nodes. Moreover, Ganglia is easy to be extended to

measure and distribute other metrics, using simple

command line [6].

This paper is organized as follow. In Section 2, we

present an overview of Ganglia and the Installation &

Configuration of Ganglia in Section 3. In Section 4 we

present our experience on using Ganglia to monitor our

cluster and in Section 5 we conclude the paper.

2. Ganglia

Ganglia is an open source distributed monitoring

system for high performance computing (HPC) systems

such as clusters & grids. It uses technologies such as

XML for data representation, XDR for compact,

portable data transport, and RRDtool for data storage

and visualization. RRDtool is a database designed to

store time series of data, e.g., system log at a constant

time interval. Ganglia has been used to link and handle

hundreds clusters with thousands nodes.

Ganglia view the CPU utilization, i.e., memory

usage, disk usage, network statistic, number of running

processes, and all other Ganglia metrics. The Ganglia

system is comprised of Ganglia Monitoring PHP-based

web fronted and two small utility programs, i.e., gmond

and gmetad. The architecture of Ganglia is figured in

Figure 1.

Figure 1. The architecture of Ganglia

2.1 Ganglia Monitoring Daemon (gmond)

Gmond is a multi-threaded daemon which runs on

each cluster node being monitored. Gmond is

responsible for monitoring changes in host state,

multicast relevant changes, listen to the state of all

other ganglia nodes via a multicast channel and answer

requests for an XML description of the cluster state.

Each gmond transmits information in two ways, i.e,

unicasting/multicasting host state in external data

representation (XDR) format using UDP message or

sending XML over TCP connection.

2.2 Ganglia Meta Daemon (gmetad)

Gmetad is responsible for collecting states of the

data source (each nodes in a cluster or multiple

clusters). Data sources may be either gmond daemons,

representing specific clusters, or other gmetad

daemons, representing sets of clusters.

Ganglia is using a tree of point to point connections

amongst representative cluster nodes to aggregate the

state of multiple clusters. At each node in the tree, a

gmetad periodically polls a collection of data

sources, parses the collected XML, saves all numeric,

volatile metrics to round-robin databases and exports

the aggregated XML over a TCP sockets to clients.

Since each cluster node contains a complete copy of its

cluster's monitoring data, each leaf node logically

represents a distinct cluster while each non-leaf node

logically represents a set of clusters.

2.3 Ganglia PHP Web Frontend

Ganglia-web provides a view of the collection

information of each node in a cluster or multiple cluster

via real-time dynamic web pages in graphs. The

Ganglia web frontend is written in the PHP scripting

language, and uses graphs generated by gmetad to

display history information.

3. Installation And Configuration

3.1 Installation

As mentioned on the previous chapter, ganglia

consists of three components; gmond, gmetad, and web-

frontend. There are three installation procedures based

on installation packages, which will be described on the

next sub-sections.

3.1.1 Source packages

Download the latest source version of Ganglia

(extention .tar.gz) from SourceForge website. Execute

the following sequence of commands as normal user:
$ tar xzvf ganglia-3.1.1.tar.gz

Apply node configuration on the installation package:
$ cd ganglia-3.1.1

$./configure

$ make

On the head node, which will give monitoring

service with web-front end, the installation

configuration must has –with-gmetad option which

means that the installation will also configure gmetad

and web-front end.
$./configure –with-gmetad

This options requires rrdtool which is by default

located in:
/usr/include/rrd.h

/usr/lib/librrd*

when they located on different directory, the

configuration must define their location:
$./configure \

 CFLAGS="-I/rrd/header/path" \

 CPPFLAGS="-I/rrd/header/path" \

 LDFLAGS="-L/rrd/library/path" \

 --with-gmetad

when using gmetad, user has to make sure that they

have a directory owned by “ganglia” named
/var/lib/ganglia/rrds

Install the configured installation package from root

account by executing:
make install

After every process finished and succeed, ganglia

daemons (gmond and gmetad) can be run with
/etc/init.d/gmond start

/etc/init.d/gmetad start

3.1.2 Linux distribution installation packages

For specific Linux distribution, there are specific

installation packages. Two most popular Linux

distributions which give ease of use for users, Fedora

core and Ubuntu has their own installation packages

format.

 Fedora core and its derivatives.

They have a rpm (RedHat package manager). In

order to install ganglia from rpm, user has to

download the lastest rpm packages from ther favorite

rpm provider (such as http://rpmfind.net/).

Installation can take place by executing:
rpm –ivh ganglia-gmond-3.1.1-

3.fc10.i586.rpm

rpm –ivh ganglia-gmetad-3.1.1-

3.fc10.i586.rpm

 Debian and its derivatives (such as Ubuntu).

They have a deb (Debian package manager). In order

to install ganglia from deb, user has to download the

lastest rpm packages from ther favorite debian

package provider (such as

http://packages.debian.org/).

Installation can take place by executing:
dpkg -i ganglia-monitor_2.5.7-

5_i386.deb

 After every process finished and succeed, ganglia

daemons (gmond and gmetad) can be run with
/etc/init.d/gmond start

/etc/init.d/gmetad start

3.1.3 Linux software package management

For specific Linux distribution and system which is

connected to online/offline repositories, there are

software package management tools which can easily

install packages and their dependencies.

 Fedora core and its derivatives.

They have a yum tool. In order to install ganglia

from repository, user has to set up their repository

configuration so that if can access to Fedora core

repository sites.

Installation can take place by executing:
yum install ganglia-gmond

yum install ganglia-gmetad

 Debian and its derivatives (such as Ubuntu).

They have a apt tool. In order to install ganglia from

repository, user has to set up their repository

configuration so that if can access to Debian

repository sites.

Installation can take place by executing:
apt-get install ganglia-monitor

apt-get install gmetad

 After every process finished and succeed, ganglia

daemons (gmond and gmetad) can be run with
/etc/init.d/gmond start

/etc/init.d/gmetad start

3.2 Configuration

3.2.1 Gmond Configuration

Default gmond configuration file is in

/etc/ganglia/gmond.conf.

The global section controls general characteristics

of gmond. The attributes of global section are

daemonize to specifiy whether gmond will daemonize

or foreground, setuid to specify whether gmond will

set its effective UID to the uid of the user specified by

user attribute, user to specify the user, debug_level

specifies whether gmond will run normally or

foreground and outputting debugging information,

mute to specify whether gmond will send data

regardless of any other configuration directives, deaf

to specify whether gmond will receive data regardless

of any other configuration directives, host_dmax to

specify the maximum amount of time (in second) to

flush a host after it has not heard, cleanup_threshold

to specify the minimum amount of time before gmond

will cleanup any hosts or metrics, gexec to specify

whether gmond will announce the hosts availability to

run gexec jobs, send_metadata_interval to establish

an interval in which gmond will send or resend the

metadata packets that describe each enabled gmetric

and an optional attribute module_dir for indicationg

the directory where DSO modules are to be located.

The attribute of the cluster is defined in a cluster

section. The cluster attributes are name, owner,

latlong and url. The name attributes specifies the

name of the cluster, the owner specifies the cluster

administrator, latlong specifies the latitude and

longitude GPS coordinates of the cluster and url for

more information on the cluster. The host section

specifies of the host, like the location.

The module section contains parameters that are

necessary to load a metric module. The module contains

name specifies the module's name, path specifies the

path from which gmond is expected to load the module,

language (optional) specifies the source code language

in which the module was implemented (example :

C/C++, Python), and params (optional) can be used to

pass a single string parameter directly to the module

initialization function (C/C++ module only).

The collection_group section collects the CPU

metrics status and collection time. The

collection_group section attributes are collect_once

specifies whether CPU metric will be collected once at

startup or not (value : bolean), collect_every specifies

how many seconds CPU metrics will be collected

(value : number) and time_threshold specifies the

maximum amount of times that can pass before gmond

sends all metrics. The collection_group section is

followed by metric section that contain name,

value_threshold, and title.

3.2.2 Gmetad Configuration

Default gmetad configuration file is in

/etc/ganglia/gmetad.conf.

Data source, can be cluster or a grid (comes from

another gmetad) to be monitored is defined in the

data_source section. Format of the data_source

section is:
data_source "my cluster" [polling

interval] address1:port

addreses2:port ...

where "my cluster” is the name of the cluster to be

monitored, address1:port is IP address or name and

port pair of machine to identity data source. Multiple

IP addresses is used for fail-over.

3.2.3 PHP Web Frontend Configuration

Ganglia web frontend configuration file is in

/usr/share/ganglia/conf.php.This configuration

file defines the template, gmetad location, RRDtool

location, time range and metrics for graphs.

The template_name variable defines the template

(like skin) used in the ganglia web. The default and

user-defined templates are stored in the “./templates”

directory. The gmetad location is defined in

gmetad_root variable. The graphdir variable defines

the location for modular graph files.

4. Experience On Spasi

In this section we will present our experience on

using Ganglia for monitoring our cluster. We will

describe our cluster platform first followed by

experimental setup, result and discussion.

4.1 SPASI in a brief

The cluster we have developed,

spasi.informatika.lipi.go.id (SPASI), consists of 3

linux clusters. The first cluster, Borobudur, consists of

6 nodes, each with Pentium !!! 800MHz with 256 MB

RAM and fast Ethernet networking. The second cluster,

Kuta, consists of 4 nodes, each with dual core 2.4GHz

Pentium processor with 1 GB RAM and gigabit

Ethernet networking. And the third cluster, Toba,

consists of 8 nodes, each with Intel Core 2 Duo E7400

2.8GHz Pentium processor with 1 GB RAM and

gigabit Ethernet networking. Both clusters run a

customized fedora10, with kernel version 2.6.27.9-

159.fc10.i686 and NFS for file sharing. The daemons

were compiled with gcc 4.3.2 and glibc 2.9. The

architecture of SPASI, is figured in Figure 2.

Figure 2. The architecture of SPASI

User access the cluster (head/node0) through

internet. Head/node0 has 2 ethernet devices, where eth0

is the private IP address for cluster network (Private IP

class B) and eth1 is the public IP address of our system.

In head/node0, also located webserver for our online

compiler, CLAW (cluster access through web). The

architecture for CLAW is figured in Figure 3 and the

homepage of CLAW is figured in Figure 4.

Figure 3. The architecture of CLAW

The CLAW has three main parts, i.e., programming

interface, monitoring and administration. The

programming interface menu allows user to write,

upload, download, save, compile, execute and also

display output and error message. The monitoring menu

allows user to monitor a whole of cluster, including

resources and networks while administration menu is

built for resources management and administration.

Figure 4. The homepage of CLAW

The CLAW has the following specifications: C/C++

code for parallel application code, OpenMPI for

parallel programming library and environment,

OpenPBS/Torque for resources management and

administration, and Ganglia for system and network

monitoring.

4.2 Results and Discussion

Monitoring output of ganglia can be access through

accessing the ganglia web-front end on the head node.

The captured monitoring status screen of SPASI are

figured in Figure 5 to Figure 7.

Figure 5. The spasi home screen

Figure 6. The Kuta cluster physical view

Figure 7. The Kuta cluster load view

Based on our experience in using ganglia to monitor

our cluster, we found that ganglia reports important and

useful node information, such as load (load/processor),

memory (bytes), CPU (percent), network (bytes/sec),

and packets (packets/sec).

Ganglia reports detailed physical information on

every nodes includes CPU count, CPU speed, memory

total, last boot time, machine type, operating system,

operating system release, location and additional

information on swap space total. CPU status reported

by Ganglia includes CPU user, CPU system, CPU idle,

CPU aidle, CPU wio, CPU intr, and CPU sintr. On

memory status Ganglia reports free memory, shared

memory, memory buffers, cached memory and free

swap memory. On packet status Ganglia reports

packets sent, packets received, bytes sent, and bytes

received. Disk status reported by Ganglia include total

disk space, disk space available and maximum disk

space used. Moreover Ganglia is also reports total

running processes and total processes.

Ganglia also allows us to track the clusters status in

the last hour, day, week, month, and year. Beside that,

in our experience on using Ganglia in our fedora

operating system-based cluster, Ganglia is very easy to

install and configure.

5. Conclusion

Ganglia is a cluster monitoring tool that has a

capability to collect and view both the whole cluster

and every nodes status in graphs through dynamic web

pages. However, Ganglia doesn't have a capability to

send some alert mechanism if any problem happened,

like provided by Nagios, and also doesn't report on MPI

parallel applications execution like in Visuel. As a

future work, we will analyze possibilities to customize

Ganglia or combine Ganglia with other open source

cluster monitoring tools to improve the performance on

our cluster monitoring tool.

References

[1] Gropp W., Lusk E, and Sterling T, Beowulf

Cluster Computing with Linux, The MIT Press,

2003.

[2] Li KC, Chang HC, The Design and

Implementation of Visuel Performance Monitoring

and Analysis Toolkit for Cluster and Grid

Environments. Springer Science+Business Media,

LLC, 2007.

[3] Benincosa V, Ganglia and Nagios, Part 1 : Monitor

Enterprise Cluster with Ganglia : Install,

Configure, and Extend Open Source Ganglia to

Effectively Monitor a Data Center. IBM, 2009.

[4] Benincosa V, Ganglia and Nagios, Part 2 : Monitor

Enterprise Cluster with Nagios : Install Nagios to

Effectively Monitor a Data Center; Make Ganglia

and Nagios work Together, IBM, 2009.

[5] M.L.Massie, B.N.Chun, D.E.Culler, The ganglia

distributed monitoring system : design,

implementation, and experience, Parallel

Computing 30 : 817-840, 2004.

[6] M.S. Jennifer, C. Ben, Monitoring clusters and

grids, ClusterWorld, Volume 2 No 7.

[7] Baker, M., Cluster Computing White Paper,

University of Portsmouth, UK, 2000.

[8] “High Performance System Laboratory” Research

Center, KAIST Computer Science webpage :

http://camars.kaist.ac.kr/~nrl/e_index.html

[9] D.S. Federico, J.K. Mason, L.M. Matthew, E.C.

David, Wide Area Cluster Monitoring with

Ganglia, San Diego Supercomputing Center &

Univ of California, Berkeley, 2003.

