
Proceedings of International Seminar on Applied Technology, Science, and Arts (2nd APTECS),
Surabaya, 21-22 Dec. 2010, ISSN 2086-1931

1

Robot Soccer System Based on Virtual Force Field Method
Approach

RIZKY YUNIAR HAKKUN1, ENDAH SURYAWATI NINGRUM1, AND SETIAWARDHANA1

1Politeknik Elektronika Negeri Surabaya,
Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

email: {rizky, endah, setia}@eepis-its.edu

Abstract This paper discusses the methods used to determine the robot path and avoid obstacles. The method used is
based on developing the Virtual Force Field method.From the robot position obtained from the camera, that is calculated
each resultant of obstructions. Furthermore, the robot will move towards the target of the ball. But if there is an obstacle
in front of the robot will move toward the direction of the resultant. Output sent to the robot via a serial module and the
subsequent results visualize the movement of the robot in the simulation program.

 Keywords soccer robot, virtual force field, vector

1. Introduction
The issues discussed are as follows :

 The parameters used in the process of determining
the object and the target.

 The parameters used as input to the module, which
is used to determine the paths and avoid collisions.

 How to convert the input data of the position of the
robot and other objects from the camera into a
variable so that it can obtain input and output
parameters.

 How to visualize the results of a structured
program in a simulation program.

As for the limitations problem created is as follows:
 This study assumes the field size used was 2.2 m x

1.8 m
 Just make a rule of robot soccer game.
 Terrain is considered flat trajectory
 The number of robots is 3.
 Visualization presented in 2D animation.
 Connection for data transmission using the serial

port.

2. Related Works
Various studies have been conducted since 1991

and has gained a lot of varying results. One of them is
on the robot Caramel. In this study, the sensor used is
an ultrasonic sensor. This robot is designed to have
some ability to fix the limitations and weaknesses in
Potential Field primitive methods, such as the ability
to define path, avoid collisions, able to move quickly
and based on real-time.

In this paper, camera will use as a sensor. The
camera serves to acquire data, such as the position of
objects contained in the field as a input [3]. Then the
method was applied to the PC, and the results will be
sent to the robot via a wireless module [3]. In this
paper does not use 2D histogram grid as used by
Koren, Y. and Borenstein, J [2] but the calculation is

based on the vector and Cartesian coordinates (x, y) so
that the desired results more details .

3. Methodology
The research methodology can be seen in the

following figure. The scope of this research is on the
inside of the red box.

Figure 1. Design System

3.1 Input from Sensor
After doing a visual servoing system and acquiring

data in the field, then the output will be sent via the
serial port. Visual servoing is object detection using a
camera. Data is sent in the form of object position data

2

(x, y). Because the visual servoing system and the
simulation program are in a different PC then the
delivery done via the serial port.Input in the form:

 current robot position
 ball / target position
 the position of the robot opponent

After input is received then the program will do the
parsing of data to obtain the value of x and y. Parsing
data is done to get the value of x and y values In the
delivery of data sent with the following format :

“ax1y1x2y2x3y3”

With each of the 3 digits for values of x and y
are sent, with a character as a header.Header to
use to mark that a data will be entered. If a
character has a header in addition to the
incoming data after the character will not be
stored. If a data has a header then it will ensure
that subsequent data is stored in an array.
3.2 Motion Planning
3.2.1 Game Rule
 Rule game is a rule that should be used as a

benchmark of the robot movement. This rule will
be the basis for determining the game
strategy. Rule game on this system is:

 Robots have the ball toward the target, and avoid
the opponent robots

 Opponent moves so that the system used is based
on real time

 The robot has a range with a specific value with
the central point is the midpoint of the robot.

 First robot will determine how much distance the
target and obstacle against him. If the distance of
an object is less than the range of the robot must
avoid the obstacle in a certain direction.

 From the known position that is calculated as the
resultant of vectors robots, opponents and
targets. Then you will know the resultant direction.

 Calculation of the resultant done continuously
along with the position of a moving robot and the
opponent (real time).

 Output of the program are sent to the robot via
serial port.

 The process stops when the robot has reached the
target position.

3.2.2 Motion Planning
Motion Planning includes path planning and

collision avoidance. Determination of paths used to
determine the position of other robots, the position of
the object and the target (in this case the ball and the
wicket) and determine the path that must be passed by
the robot from initial position to goal position that has
been determined by criteria that route is best. While
collision avoidance is used when the robot finds the
position of obstacle at a certain distance and then
move to avoid it. There are three layers in this phase :
(1) Vector Formulation

Formulation of the vector used to calculate the
vector of each object, the robot, obstacle and the
target. The steps are :
1. Calculate the vector of each object from a known

position (x, y)

2. From Known position, calculate the object angle of
the x-axis

There are α1, α2, α3 because there are three
objects in the field of robot, obstacle and the robot.

3. Now we know the angle of each, then calculate the
difference of angle between two vectors :
Ө = α1 - α2

For α1 < α2 and otherwise.
4. With cosines formula, calculate the resultant robot

one with another object

5. Determining the direction of the resultant

(2) Obstacle Mapping
Mapping obstacle performed to detect the presence

of obstacle around the robot. The first time calculated
the distance between the robot with the obstacle using
Euclidian distance formula.

In this simulation program has been determined
that the range value 40. Of 40 this means that the robot
has a range / range as far as 40 pixels from the center
point.
(3) Obstacle Avoidence layer

In this layer to be checked against the obstacle the
robot position, whether the obstacle is in range or out
of range. If the obstacle is in the range of the robot
will move away and if not then the robot will move
toward the target. Terms of collision avoidance is done
by calculating obstacle in getting directions and then
the resultant inter-robot with obstacle. In the
simulation program, calculation of Euclidian distance
performed from the obstacle to robot. If the distance is
less than the range (in this case the range specified
range = 40) then the robot moves in the direction of
the resultant avoid the obstacle. And if the distance
exceeds the range of the robot moving towards the
target.
3.3 Output Delivery

Output is sent is the position of the target and the
size of the resultant corner. Delivery of output is done
using the serial port.
3.4 Simulation Design

The design of the simulation program using the
JDK (Java Development Kit) 6.6 Netbeans 6.8 with
additional libraries and the Java Game Engine GTGE

3

javax.comm package for access to the serial
port. There are several classes :
 Simulation.java Class This class is the parent of all

classes and will be called the first time when the
program runs. This class is made to extend the
class to GameEngine GTGE. Game Engine is a set
of all objects in a program like the look (graphics),
sound, etc.

 MenuParent.java Class This class is used to
initialize the initial values of variables such as
initial position of the object. Also used to read
input from serial port.

 SimpleSerialJava Class This class is used to access
the serial port.

 Inputan.java Class This class is used to display
beginning of the program and used to call a
function of the input data. In this class there are
buttons that when clicked it will call the class
Animation.java.

 Animation.java Class This class is used to
visualize simulation program that contains the
movement of robots on the field. After receiving
initial input from the input of the class will be
called this class. This class includes 3 layer above:
namely the rule of games, mapping obstacle and
collision avoidance.

 Vektor.java Class This class contains methods
used to calculate the vector, such as calculation of
angles and calculation of the direction / angle the
resultant outcome.This class is always called when
the program took the decision in determining the
resultant.

4. Experimental Result
Software testing done in 2 ways Testing Without

Integration with Serial Input (only a simulation
program) and testing the integration with serial input.
4.1 Integration Testing Without the serial input

(simulation program)
Testing without integration with a serial input

which means it is software testing performed without
taking input from the serial port. Input is taken from
the text data, which are read by the program.
This is data that is stored in the format .txt:

Figure 4. 1 Data input
Each line represents the value of x and y for each

object. The program will perform readings from the
first row until last and then store them in array.

Data is stored in an array variable tamping []. This
function is in class MenuParent.Then these variables

will in subsitusikan on a variable that holds the
position of each object
4.2 Single Player Game

Single player game consists of a robot, an
opponent and 1 ball. In the single player game is a
robot given the initial position of example (as in the
input text):

Robot 1 : (50,70)
Opponent Robot: (100,100)
Ball : (200,130)
Of the three positions above can be described

as follows :

Figure 4. 2 The initial position of robots, the
opponent and the ball

Black box is the range / range of mapping obstacle
called the active window. Range is calculated from:

double range = pos_robot_x + 100;
This Active window will continue to follow the

movement of the robot moves in invisible (not visible
on screen). If a target / ball is in the active window, the
program will calculate the resultant between the robot
opponent with the ball. And if the target / ball is
outside the active window, the program will calculate
the resultant between the wall with the robot opponent.

When moving, the program will calculate:
 Calculate vector between the robot with a big

opponent by using the formula of Pythagoras, we
can get besarya displacement vector between the
robot with the opponent. Because the robot as the
central point (0.0) then can be obtained:

With x2 = x position of obstacle, x1 = x position of
the robot, y2 = y position of obstacle and y1 is y
position of robot. So the position can be obtained
diata :

4

 Calculate the vector of the robot with a target by
using the same formula it can be obtained :

Calculating the angle between the robot with the
opposite of the opposite corner of the robot is obtained
from:

With y is a (position versus y - y position of the
robot) and x is the (opponent's position x - x position
of the robot). By using the formula above, the angle
between the robot with the opponent is:

 Calculating the angle between the robot with the
target. To calculate the angle between the robot
with the target using the same manner as above. It's
just for x2 and y2 are each target position x and y
position of the target. By using the formula above,
the angle between the robot with the target is:

So the angles are flanked by a robot, opponent and
the target is:

21,8+30,964 = 52,764

 Calculate the magnitude and direction of the
resultant. To calculate the amount of resultant
formula can be used :

By using the formula above with F1=58,3095 and
F2 = 161,5549 and α = 52,764, then :

To calculate the angles in the resultant use the
following formula:

With Ө is the wedge angle between the robot,
opponent and target. By using the formula above, the
resultant angle is large :

4.3 The testing carried out by integration with
serial input

Testing I :
Before performing the test on the software, test the

connection between 2 PCs using hyperterminal. For
example we make a connection on port COM1.

Figure 4. Data sent from COM1 toCOM2
Data obtained from serial port input as follows:
 Robot : (108, 134)

5

 Opponent Robot : (167, 104)
 Target : (274, 88)

Figure 5. Simulation program

After input from serial port into the robot, target
and your opponent will be positioned at the starting
position obtained from the serial input.

Figure 6. Robot moving

The robot starts moving towards the target. In this
experiment did not use a real robot but use a marker
which is positioned as a robot, target and obstacle. The
robot is driven manually by hand. Then by using this
simulation program can be seen the movement
generated by the VFF method that makes the robot can
avoid obstacles.And here are the results:

Figure 7. Robot hit an obstacle because the position
was not updated

The figure above shows that the robot hit a
snag. Because the marker is not updated so that the
data used is data starting position and it caused the
robot hit an obstacle.

Testing II :
This experiment is the same as experiment I but the

robot is driven with a manual.

Figure 8. Robot succed to avoid obstacle

In this second experiment the position of the robot,
obstacle and the target is updated manually. Manual
that is meant here is the marker is moved manually as
a robot.

6

Figure 9. Robot toward target

Figure 10. Robot successfully reach the target

5. Conclusion
Conclusion
 The closer the robot to the obstacle then thrust a

virtual robot to the obstacle the greater and vice
versa.

 This application is able to work in real time
because it is able to update the position even
though the execution has not completed the
previous movement.

 This application can be developed as needed for
example to be developed at the game with single
player or multiplayer modes.

 This application is capable of parsing data quickly
and accurately so that there is no guarantee that the
received data input is valid data.

 VFF method proved to have a better performance
than the conventional method of being able to
work in real time.

 The weakness of this system is that if the obstacle /
barrier complex shaped like a hitch in the form of a
barrier wall.

Suggestion :
 Robot motion on this application still look stiff and

need an improvement to the display / visualization.
 In further developments, it is expected that the

application was made to have the facility to
synchronize the speed of data between the receiver
and sender of data.Because if the data is sent too
late to influence decision making in the movement
of the robot.

 In the further development of this program is
expected to be applied to the actual robot, so no
need to use markers.

6. References
[1] http://www.robotstorehk.com/soccer/soccer.html (4

September 2009)
[2] Supriadi, Ahmad. Perencanaan Jalur dan Penghindaran

Tabarakan pada Robot POEMAV. Departemen Teknik
Elektro, Institut Teknologi Bandung. Desember 2005. url :
http://s.itb.ac.id/%7Enarpen/kuliah/ta1/contoh%20makalah
%20TA%201/Paper%20Seminar%20ahmad.doc (diakses 22
Nopember 2009)

[3] Koren,Y. Senior Member, IEEE and Borenstein, J., Member,
IEEE The University of Michigan, Ann Arbor. Potential
Field Methods and Their Inherent Limitations for Mobile
Robot Navigation. IEEE Conference on Robotics and
Automation, Sacramento California, pp 1398-1404. April
1991. Url :

[4] http://wwwpersonal.umich.edu/~johannb/Papers/paper27.pdf
.(diakses : 8 September 2009).

[5] Latombe, Jean-Claude. Robot Motion Planning. Kluwer
Academic Publishers. Massachusetts. 1991.

[6] Bastan, Muhammet. Visual Servoing of Mobile Rrobots
Using Potential Fields.2004. (diakses : 15 Oktober 2009).

[7] Prahlad Vadakkepat, Tong Heng Lee and Liu Xin.
Application of Evolutionary Artificial Potential Field in
Robot Soccer System. National University of Singapore,
Singapore. 2001. url :
http://www.ece.nus.edu.sg/stfpage/elepv/publication/APF_R
SS.PDF.(diakses 8 September 2009).

[8] J.C. Wolf , P. Robinson, J.M. Davies. Vector Field Path
Planning and Control of An Autonomous Robot In a
Dynamic Environment. url :
http://www.swrtec.de/swrtec/research/publications/VECTOR
_FIELD_PATH_PLANNING_AND_CONTROL_OF_AN_A
UTONOMOUS_ROBOT_IN_A_DYNAMIC_ENVIRONME
NT.pdf (diakses 12 Desember 2009)

[9] J. Borenstein, Y. Koren. The Vector Field Histogram - Fast
Obstacle Avoidance for Mobile Robots. IEEE Journal of
Robotics and Automation Vol 7, No 3, , pp. 278-288. June
1991. url : http://eprints.kfupm.edu.sa/71681/1/71681.pdf
(diakses 12 Desember 2009)

[10] http://wss-
id.org/blogs/nikita_manezz_sby/archive/2007/09/24/robot-
sepak-bola.aspx

[11] http://www.gurumuda.com/fisika-
sma/Penjumlahan%20vektor.pdf

[12] www.tofi.or.id/download_file/Kul_1_VEKTOR.ppt
[13] http://id.wikipedia.org/wiki/Vektor_(spasial)
[14] http://www.goldenstudios.or.id/products/GTGE/index.php
[15] http://dhimaskasep.files.wordpress.com/2008/02/osp06-

komunikasi-data-pada-sistem-manufaktur.pdf
[16] http://p_musa.staff.gunadarma.ac.id/Downloads/files/5117/le

cKK-012325-5-1.pdf

