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Abstract 

 

This paper proposes a new approach to accelerate 

a construction of automatic clusters. It initiates an 

analyse of the moving variance of clusters for each 

stage of cluster construction, then observes the 

pattern to find the global optimum as well as avoid 

the local optima. Using two constraints, valley-

tracing and hill-climbing, to find the global 

optimum, the proposed approach reverses the 

pattern in order to accelerate the automatic 

clustering. Experiment result performs the 

effectiveness of the proposed approach in this 

paper. 

 
1. Introduction 

Clustering is an exploratory data analysis tool 

that deals with the task of grouping objects that are 

similar to each other [2, 6, 12]. For many years, 

many clustering algorithms have been proposed 

and widely used. It can be divided into two 

categories, hierarchical and non-hierarchical 

methods. It is commonly used in many fields, such 

as data mining, pattern recognition, image 

classification, biological sciences, marketing, city-

planning, document retrieval, etc. The clustering 

means process to define a mapping f:D�C from 

some data D={t1, t2, …tn} to some clusters C={c1, 

c2,…, cn} based on similarity between ti. 

The task of finding a good cluster is very 

critical issues in clustering. Cluster analysis 

constructs good clusters when the members of a 

cluster have a high degree of similarity to each 

other (internal homogeneity) and are not like 

members of other clusters (external homogeneity) 

[3, 8]. In fact, most authors find difficulty in 

describing clustering without some suggestions for 

grouping criteria. For example, “the objects are 

clustered or grouped based on the principles of 

maximizing the inter-class similarity and 

minimizing the intra-class similarity” [8]. One of 

the methods to define a good cluster is variance 

constraint [7] that calculates the cluster density 

with variance within cluster (Vw) and variance 

between clusters (Vb) [4, 12]. The ideal cluster has 

minimum Vw to express internal homogeneity and 

maximum Vb to express external homogeneity. 

It is common that most of the clustering 

methods require the users to provide the number of  

clusters as input. But, in some clustering cases the 

users have not an idea to determine the number of 

clusters. Hence, they usually try it with different 

number of clusters. It makes very difficult, 

especially if the clustering case is not easy to 

observe. A genetic algorithm was proposed to 

search optimal clusters [1]. But, it still requires the 

user to provide the number of clusters in a priori. 

Tseng and Yang proposed a genetic clustering 

algorithm [5]. The clustering algorithm will 

automatically search for proper number of clusters 

and classify the objects into these clusters at the 

same time. However, before using the genetic 

clustering, this algorithm utilized the single linkage 

hierarchical method to reduce the size of data set if 

the size is large. In 2004, Barakbah and Arai 

proposed a new approach to make automatic 

clustering with purely utilizing the single linkage 

hierarchical method [9]. The algorithm identify the 

moving average of cluster construction for each 

stage. In this paper, we propose an improved 

approach with two constratints, valley-tracing and 

hill-climbing, to find the global optimum and make 

the automatic clustering with analyzing the moving 

average. Besides it improves the acceleration of 

automatic clustering with reversing the pattern of 

moving variance. 

The remaining part of the paper is organized as 

follows. In Section 2, the basic concept of single 

linkage hierarchical algorithm is introduced. In 

Section 3, the cluster density is described. Section 4 

describes the two constraints, valley-tracing and 

hill-climbing. Experimental results of the two 

constraints as well as the applicability to make 

automatic clustering is described in Section 5. 

Section 6 describes the improvement of the 

approach with reversing the pattern of moving 

variance to accelerate the automatic clustering. The 

paper is concluded in Section 7. 

 

2. Single linkage hierarchical algorithm 
One of the most famous methods in clustering 

is that classified method as hierarchical clustering. 

In hierarchical clustering the data are not 

partitioned into a particular cluster in a single step. 

It runs with making a single cluster that has 

similarity, and then continues iteratively. 

Hierarchical clustering algorithms can be either 

agglomerative or divisive [6, 10, 11]. 

Agglomerative method proceeds by series of 

fusions of the “n” similar objects into groups, and 

divisive method, which separate “n” objects 
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successively into finer groupings. Agglomerative 

techniques are more commonly used. 

One of similarity factors between objects in 

hierarchical methods is a single link that similarity 

closely related to the smallest distance between 

objects [2]. Therefore, it is called single linkage 

hierarchical algorithm. Euclidian distance is 

commonly used to calculate the distance in case of 

numerical data sets [11]. For two dimensional 

dataset, it performed as: 
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The algorithm of single linkage clustering 

method is composed of the following steps: 

1. Begin with an assumption that every point 

“n” is it’s own cluster ci, where i=1..n. 

2. Find the nearest distance between m(cr) 

and m(cu), where r≠u and m(cj) is 

members of cluster cj.  

3. Merge cr and cu into new cluster ca where 

m(ca) is members fusion of cr and cu. 

4. Repeat until it reaches optimum 

 

3. Cluster density 

The density of cluster can be determined by the 

variance within cluster and variance between 

clusters. The ideal cluster has a low variance within 

cluster and a high variance between clusters [4, 12]. 

If there is some cluster ci, where i=1…k, and 

each of them have members xi, where i=1…n and n 

is total members of each clusters, and px is the 

centroid of cluster p. Then, the variance of cluster p 

(
2

pδ ) can be calculated as: 
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If N is total numbers of members in all clusters, 

variance within cluster (vw
2
) can be defined as: 
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Then, variance between clusters (vb
2
) quantifies 

the variability of the group mean around the grand 

mean ( x ), and hence the component of group 

differences. It is defined as: 
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Because an ideal cluster has minimum vw
2
 and 

maximum vb
2
, it means the ideal cluster has 

minimum v, where: 
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However, eventhough minimum v expresses the 

ideal cluster, we can not apply it directly to find the 

global optimum. There are some experiments 

proves that in some cases, minimum v reaches the 

local optima of cluster construction. For example, 

in case of Fig. 1 with n=50, minimum v=0.15 

resides in stage 1 with 49 total cluster. Stage 2 

performs v=0.18 with 44 total cluster. But, actually 

the ideal cluster resides in stage 15 with 6 total 

clusters where v=0.22.  

Figure 1. A case of clustering 

 

Therefore, minimum v can not be used directly 

to find the global optimum. If we force to apply 

minimum v directly to identify the global optimum, 

in some cases, it may fall in local optima. To solve 

this problem, this paper proposes the new approach 

to find the global optimum and avoid the local 

optima. 

 

4. Valley-tracing and hill-climbing approach 

4.1. Identifying pattern of moving variance 

 

Single linkage hierarchical algorithm is very 

thorough to make analysis every states of cluster 

construction stage by stage. Therefore, this paper 

used the single linkage as appropriate method in 

order to identify the moving variance from each 

stages of cluster construction. 

 

Figure 2 shows the moving variance from each 

stages of cluster construction of case performed in 

Fig. 1. There we can also see that the global 

optimum resides in stage 15, with 6 total cluster. 

 

For finding the global optimum of cluster 

construction and avoid the local optima, we 

propose a new approach to solve the case. First of 

all we try to describe all patterns of the moving 

variance, then analyze the possibility of the global 

optimum that resides in certain places.  
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Figure 2. Moving variance of cluster construction for each stages 
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Then, we look for position of the possible global 

optimum and classify into two contraints, hill-

climbing and valley-tracing. 

 

4.2. Hill-climbing 

 

Based on many experiments, the global 

optimum usually resides in the stage that has far 

different value with its next stage. If it is visualized, 

it seems like a hill, as figured in Fig. 2. The effort 

to find the global optimum considers to climb the 

hill for each cluster construction. It has altitude 

value to determine how possible the climbing hill 

to be a global optimum. Then, we describe that the 

possibility to find the global optimum by hill-

tracing resides in stage i fulfilled: 
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α
1

           (6) 

 

where α  is altitude value. In this paper, we use 3 

different values of altitude, α =2,3 and 4. 

 

4.3. Valley-tracing 

 

In this way, the possible optimum place can be 

traced in the valley of moving variance. From 

analyzing the pattern of moving varince, we 

describe that the possibility to find the global 

optimum by valley-tracing resides in stage fulfilled: 
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for i=1…n, and n is latest stages of cluster 

construction. 

 

4.4. Considering differential value 

 

As we described before that minimum v can not 

express value of global optimum. It needs 

transformation into certain value recognized 

absolutely as considerable value of global optimum.  

 

The differential value between v for each stages can 

be considered [9]. Fig. 6 shows the differential 

value of vi. 

 

Then, we identify the differential value of altitude ∂ 

for each stages. It can be defined as: 

 

∂ = (vi+1 – vi) + (vi-1 – vi) 

         = (vi+1 + vi-1) – (2 . vi)         (8) 

 

In order to avoid the local optima and find the 

global optimum, it can be derived from maximum 

of ∂ that fulfilled Eq. (8). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Differential value of vi 

 

Fig. 3 performs the trasformation of moving 

variance shown by Fig. 2 into differential values. 

From Fig. 3 we can see that the global optimum has 

been not determined yet because it may perform the 

closeness of values in some stages. Therefore we 

apply the two constraints, valley-tracing and hill-

climbing. Fig. 4 and Fig. 5. performs the result of 

applied hill-climbing and valley-tracing in the 

moving average. We see that the global optimum of 

differential values after applying the two 

constraints can be determined as well as avoid the 

local optima because the uniqueness of highest 

values in the differential values. 

 

4.4. Making automatic clustering 

 

To construct cluster automatically, we put the 

additional variable λ as a threshold value  to get a 

maximum ∂. The more complex clustering case 

needs smaller λ to set as more precise as possible. 

By setting the value of λ, the well-separated cluster 

will be constructed. In this paper, we use various 

values of λ from 0.05-0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Ilustration of 9 positions to generate 

random normal data distribution. 

 

5. Experimental result 
We apply our proposed approach in the 

random normal data distribution. For experimental 

purpose, we use 2 dimentional data set (x and y). 

Then, we determine 9 nodes, as figured in Fig. 7, as 

positions to generate randomly each data clusters. 
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Those nodes are generated randomly with 9 

maximum nodes, with minimum total data=6 and 

minimum total clusters=3. Next, we generate 

random cluster data distribution around each nodes 

position inside diameter=5 because we want to 

intent well-separated clusters. Numbers of data for 

each them are generated randomly and ≤ 10. With 

this model, it can generate thousands of different 

combination for normal data distribution. In this 

paper, we made 1000 experiments. 

 

In the experiment, we involved four constraints, 

valley-tracing and three of hill-climbing with 

different altitude, α=2,3, and 4. We compute the 

error percentage of each constraints. We also 

compute the gap distance (ϕ) between global 

optimum and candidate global optimum. The high 

ϕ express the high possibility to apply threshold in 

order to make automatic clustering. Table 1 

performs the error percentage and ϕ from 1000 

experiments. 

 

Table 1 

Comparing four constraints 

 Error (%) ϕ 

Valley-tracing 8.9 0.7861 

Hill-climbing, α =2 29.6 10.946 

Hill-climbing, α =3 13.6 11.353 

Hill-climbing, α =4 12.6 10.512 

 

 

We can see in Table 1 that Valley-tracing is 

superior than the others because the constraint 

considers not only the next stage from current stage 

of cluster construction, but also involves the 

previous stage. It is able more to filter the global 

optimum and eliminate the local optima. 

 

 

 

 

 

We also establish practical applicability of four 

constraints for automatic clustering with applying 

various λ from 0.05-0.5. Figure 8 shows the 

numbers of error from four constraints with 

different λ. 

 

From experiment results in Fig. 8 we can see 

that λ=0.3 is the ideal threshold to make automatic 

clustering. It happened in all constraints that λ=0.3 

made the lowest error of automatic clustering. 

Table 2 performs the percentage of all error from 

1000 experiments. 

 

Table 2 

The error percentage for automatic clustering 

 Error (%) 

Valley-tracing 43.18 

Hill-climbing, α = 2 14.54 

Hill-climbing, α = 3 9.48 

Hill-climbing, α = 4 32.8 

 

 

From Table 2 we can see that Hill-climbing is 

relatively more robust to make automatic clustering 

rather than Valley-tracing. The low ϕ for Valley-

tracing, as shown  in Table 1, made this constraint 

computed 43.18% of error to make automatic 

clustering. The highest ϕ reached by Hill-climbing 

with α=3 and made this constraint computed 9.48% 

of error for automatic clustering. 

 

6. The improvement of the approach 

In this paper we make the improvement of the 

proposed approach to accelerate the automatic 

clustering. It reverses the pattern of moving 

variance. First of all we change the agglomerative 

that we used for single linkage hierarchical 

algorithm into divisive in order to reverse the 

pattern of moving variance. Then, to apply the two 

constraints, valley-tracing and hill-climbing, in the 
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reversed pattern we should redefine Eq. (6) and Eq. 

(7) in order to track continous points in the pattern. 

 

Because of the reversion of the pattern, where 

the stage of i+1 will be i-1 in the pattern, we can 

modifies Eq. (6) as below: 

 

ii vv ⋅>
−

α
1

         (9) 

 

It is also applied for Eq. (7) with modifying as: 
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We do not need to modify Eq. (8) because the 

result of reversion gives the equal equation. 

 

To ensure the better performance of the 

reversion, we make the experimental applicability. 

We compute 1000 experiments using two 

constraints, valley-tracing and hill-climbing (α =2, 

α =3 and α =4), with λ =0.05-0.5. We record the 

performance of automatic clustering with normal 

moving average and with reversion. 

 

Table 3 shows the comparison results of 

average numbers of stage to construct automatic 

clustering between normal and reversed moving 

average. We can see the better performance with 

shorter numbers of stage when we make the 

automatic clustering with reversion. 

 

Table 3 

Average numbers of stage between normal and 

reversed moving average 

 

 Normal Reversion 

Valley-tracing 32.3555 5.1595 

Hill-climbing, α =2 32.4388 5.0762 

Hill-climbing, α =3 35.7502 4.7648 

Hill-climbing, α =4 33.1537 4.3613 

 

 

Table 4 performs the comparison results of 

average computation time of automatic clustering 

between normal and reversion. 

 

Table 4 
Average computation time between normal and 

reversed moving average 

 

 Normal Reversion 

 (ms) (ms) 

 

Valley-tracing 3943.178 682.564 

Hill-climbing, α =2 3954.934 675.431 

Hill-climbing, α =3 3982.173 644.258 

Hill-climbing, α =4 4035.886 590.193 

 

From Table 5 we can see the reduced time of 

computation with reversed pattern of moving 

average.  

 

Table 5 

The reduced time of computation with reversion 

 Reduced time (%) 

Valley-tracing 82.69 

Hill-climbing, α = 2 83.04 

Hill-climbing, α = 3 83.82 

Hill-climbing, α = 4 85.38 

 

 

For all constraints those we used, the reversion can 

reduce 83.73% of computation time compared with 

normal pattern of moving average. 

 

7. Conclusion 
The proposed approach can solve the clustering 

problem and create well-separated clusters. From 

the experimental results with some various random 

normal data distribution clustering cases, Valley-

tracing is better to find the global optimum as well 

as avoid the local optima, because it considers the 

next and the previous stage from current stage of 

cluster construction. However, it caused low gap 

distance (ϕ) between global optimum and candidate 

global optimum. It evokes the difficulty to 

determine the appropriate threshold in order to 

make automatic clustering. Among the four 

constraints, Hill-climbing with α=3 is relatively 

better used to make automatic clustering. From the 

experiments, the appropriate threshold is converged 

around λ=0.3 for all constraints. The new approach 

in this paper to accelerate the automatic clustering 

by reversing the pattern of moving variance 

performs the faster construction time of automatic 

clustering. From experimental results it can reduce 

83.73% of computation time for constructing 

automatic clusters. 
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